Even if you are not a card-carrying sci-fi fan, you may have at some point encountered the term warp speed and perhaps even contemplated about its realities. While inter-galatctic travel and teleportation are still a far reach technologically, theoretically, that is within the known laws of physics, they are not in violation with our understanding of nature.
Warp speed, if you are not familiar, is traveling through space much faster than the speed of light. According to Einstein’s theory of Special Relativity, the fundamental speed limit in the universe is the speed of light, 300 million meters per second. Sounds fast right? But let’s put that number in perspective. If you were to travel at the speed of light from Earth to the center of the Milky Way, it would take you 25,000 years to get there. Forget about going to another galaxy within a reasonable time period. Also from relativity, due to a phenomenon known as length contraction, we know that objects get contracted as they get faster and faster. If an object travels at the speed of light, it will ultimately become contracted and squeezed into nothingness. Not very convenient for space travel either.
But if the speed of light is the ultimate speed limit, how do we get around this problem? The potential solution lies in Einstein’s theory of General Relativity, which tells us how space is curved and can be warped. The one thing that can move faster than light is how fast space itself stretches. We know this because during the Big Bang, space expanded faster than the speed of light. Thus, to travel between two distant points in space, we can manipulate space itself to get to our destination.
The way to do this would be to expand the space behind you and compress it in front of you. The expansion of the space behind you gives the appearance of a push while the compressing space in front of you is dragging you forward. But realize that this does not violate Einstein’s postulate that nothing can travel faster than the speed of light. You yourself are not moving, but space is and it can move as fast as it wants.
The best way to imagine this is by taking a balloon, where the surface of the balloon represents space. Suppose you draw two dots A and B. You are at A but B is located very far away. Now imagine taking a cut-out spaceship and taping it to a ribbon that can wrap around the balloon so that the ribbon is tied around the balloon, but not bound to it. If you squeeze the portion of the balloon in front of the spaceship, “space” is being compressed. But you’ll also notice that point A got farther away from the spaceship and point B got closer. From your perspective, the spaceship did not actually move, space did.
How then do we actually go about warping space? Well, it’s not easy, and certainly requires technology beyond anything humanity possesses currently. But in theory, a way to accomplish this is by using a HUGE amount of energy, specifically negative energy. Negative energy has an opposite effect on things. For example, if something were about to collapse in on itself, negative energy would hold it outward. If something falls down, negative energy would make it float up. A combination of negative and positive energy pushing and pulling on the space around the spacecraft would give the desired warping effect of space. So a spaceship with warp drive capabilities would have on it an engine that could create something like a bubble of this negative and positive energy enveloping the vessel.
Also, as you may have seen in sci-fi flicks that when spaceships go into warp drive, the light from point sources in space begin to stretch and get all line-y. The reason it is rendered this way is because as the spaceship moves faster, it is catching up in speed to these light beams and so the crew on-board sees how the light actually looks in its beam form. But remember, the ship itself isn’t moving faster, the space around it is.
VIDEO: World Science Festival Warp Drive, Lawrence Krauss
Star Trek 2009 Warp